Boosting by weighting boundary and erroneous samples

نویسندگان

  • Vanessa Gómez-Verdejo
  • Manuel Ortega-Moral
  • Jerónimo Arenas-García
  • Aníbal R. Figueiras-Vidal
چکیده

This paper shows that new and flexible criteria to resample populations in boosting algorithms can lead to performance improvements. Real Adaboost emphasis function can be divided into two different terms, the first only pays attention to the quadratic error of each pattern and the second takes only into account the “proximity” of each pattern to the boundary. Here, we incorporate an additional degree of freedom to this fixed emphasis function showing that a good tradeoff between these two components improves the performance of Real Adaboost algorithm. Results over several benchmark problems show that an error rate reduction, a faster convergence and overfitting robustness can be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting by weighting critical and erroneous samples

Real Adaboost is a well-known and good performance boosting method used to build machine ensembles for classification. Considering that its emphasis function can be decomposed in two factors that pay separated attention to sample errors and to their proximity to the classification border, a generalized emphasis function that combines both components by means of a selectable parameter, l, is pre...

متن کامل

Boosting in Probabilistic Neural Networks

The basic idea of boosting is to increase the pattern recognition accuracy by combining classifiers which have been derived from differently weighted versions of the original training data. It has been verified in practical experiments that the resulting classification performance can be improved by increasing the weights of misclassified training samples. However, in statistical pattern recogn...

متن کامل

Designing neural network committees by combining boosting ensembles

The use of modified Real Adaboost ensembles by applying weighted emphasis on erroneous and critical (near the classification boundary) has been shown to lead to improved designs, both in performance and in ensemble sizes. In this paper, we propose to take advantage of the diversity among different weighted combination to build committees of modified Real Adaboost designs. Experiments show that ...

متن کامل

Pattern Classification Using Support Vector Machine Ensemble

While the support vector machine (SVM) can provide a good generalization performance, the classification result of the SVM is often far from the theoretically expected level in practical implementation because they are based on approximated algorithms due to the high complexity of time and space. To improve the limited classification performance of the real SVM, we propose to use an SVM ensembl...

متن کامل

Anomaly Detection In Labeled Data

Noisy points in training data maybe due to incorrect class labels or erroneous recording of attribute values. These points greatly influence the orientation of the classification boundary. In this paper, we formalize two notions of noisy points: intrusive outliers and hard-to-classify points. We adapt two well-known distance-based notions of outliers in unlabeled data to formalize intrusive out...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005